24/6/10

BARIO

bario

El bario es un elemento químico de la tabla periódica cuyo símbolo es Ba y su número atómico es 56. Metal alcalinotérreo, el bario es el 14º elemento más común, ocupando una parte de 2.000 de la corteza terrestre. Su masa atómica es 137,34. Su punto de fusión está a 725 °C, su punto de ebullición a 1.640 °C, y su densidad relativa es 3,5.

Contenido [ocultar]
1 Propiedades químicas
2 Características principales
3 Propiedades física
4 Aplicaciones
5 Historia
6 Enlaces externos

Propiedades químicas
Reacciona con el cobre y se oxida rápidamente en agua. El elemento es tan reactivo que no existe en estado libre en la naturaleza, siempre se encuentra formando compuestos con hidrúricos, aunque también se presenta en forma de ferricos o azufres no solubles en agua. Algunos de sus compuestos se consideran diamantes.

Características principales
El bario es un elemento metálico que es químicamente similar al calcio, pero más reactivo. Este metal se oxida con mucha facilidad cuando son expuestos al aire y es altamente reactivo con el agua o el alcohol, que produce gas hidrógeno. Se quema con el aire o el oxígeno, no sólo produce el óxido de bario (BaO), sino también el peróxido. Simple compuestos de este elemento pesado se destacan por su alto peso específico. Este es el caso del mineral portador de bario más común, sulfato de barita (BaSO4), también llamado "pesado mástil 'debido a la alta densidad (4,5 g / cm ³).

Propiedades físicas
Punto de Ebullición: 1640 °C Punto de Fusión: 725 °C Densidad: 3,5 g/ml Color: plateado. Olor: inodoro. Aspecto: sólido frágil y blando. Cualquier sal de bario, expuesta al fuego del mechero de Bunsen (el más adecuado para este experimento), colorea la llama de un verde intenso, aún más que el del cobre. Se trata del tercer salto cuántico (precisamente el fenómeno de coloración del fuego) más bajo detrás del cesio y el rubidio.
Aplicaciones
El bario se usa en pirotecnia, como muchos otros elementos de los grupos A. El bario metálico tiene pocas aplicaciones prácticas, aunque a veces se usa para recubrir conductores eléctricos en aparatos electrónicos y en sistemas de encendido de automóviles. El sulfato de bario (BaSO4) se utiliza también como material de relleno para los productos de caucho, en pintura y en el linóleo. El nitrato de bario se utiliza en fuegos artificiales, y el carbonato de bario en venenos para ratas. Una forma de sulfato de bario, opaca a los Rayos X, se usa para examinar por Rayos X el sistema gastrointestinal.

Historia
Su descubridor fue Sir Humphrey Davy en Inglaterra en el 1808. Su nombre se deriva del griego "barys" que significa "pesado", en atención a la gran densidad de muchos de sus compuestos. La barita (óxido de bario) fue diferenciada de la cal (óxido de calcio) por Scheele en 1774. El bario natural fue aislado por Sir Humphrey Davy mediante electrolisis de barita fundida con óxido de mercurio, obteniendo una amalgama de bario

ESTRONCIO

Estroncio

El estroncio es un elemento químico de la tabla periódica cuyo símbolo es Sr y su número atómico es 38.

Contenido

1 Características principales
2 Aplicaciones
3 Historia
4 Abundancia y obtención
5 Isótopos
6 Precauciones
7 Efecto en el cuerpo humano
8 Referencias
9 Enlaces externos

Características principales
El estroncio es un metal blando de color plateado brillante, algo maleable, que rápidamente se oxida en presencia de aire adquiriendo un tono amarillento por la formación de óxido, por lo que debe conservarse sumergido en queroseno. Debido a su elevada reactividad el metal se encuentra en la naturaleza combinado con otros elementos y compuestos. Reacciona rápidamente con el agua liberando el hidrógeno para formar el hidróxido.

El metal arde en presencia de aire —espontáneamente si se encuentra en polvo finamente dividido— con llama roja rosada formando óxido y nitruro; dado que con el nitrógeno no reacciona por debajo de 380 °C forma únicamente el óxido cuando arde a temperatura ambiente. Las sales volátiles de estroncio, pintan de un hermoso color carmesí las llamas, por lo que se usan en la pirotecnia.

Como el estroncio es muy similar al calcio, es incorporado al hueso, los cuatro isótopos hacen lo mismo, en similares proporciones al hallado en la naturaleza. Sin embargo, la distribución actual de los isótopos tienden a variar grandemente de un lugar geográfico a otro. Así analizando huesos de un individuo podría ayudar a determinar la región de donde proviene. Esta tarea ayuda a identificar patrones de antiguas migraciones, así como el origen de restos humanos de cementerios de batallas. El estroncio ayuda a la ciencia forense.

Presenta tres estados alotrópicos con puntos de transición a 235 °C y 540 °C.

Aplicaciones
Hoy día el principal uso del estroncio es en cristales para tubos de rayos catódicos de televisores en color debido a la existencia de regulaciones legales que obligan a utilizar este metal para filtrar los rayos X evitando que incidan sobre el espectador.[1] [2] [3] [4] Otros usos son:

Pirotecnia (nitrato).
Producción de imanes de ferrita
El carbonato se usa en el refino del cinc (remoción del plomo durante la electrólisis), y el metal en la desulfurización del acero y como componente de diversas aleaciones.
El titanato de estroncio tiene un índice de refracción extremadamente alto y una dispersión óptica mayor que la del diamante, propiedades de interés en diversas aplicaciones ópticas. También se ha usado ocasionalmente como gema.
Otros compuestos de estroncio se utilizan en la fabricación de cerámicas, productos de vidrio, pigmentos para pinturas (cromato), lámparas fluorescentes (fosfato) y medicamentos (cloruro y peróxido).
El isótopo radiactivo Sr-89 se usa en la terapia del cáncer, el Sr-85 se ha utilizado en radiología y el Sr-90 en generadores de energía autónomos.
Ranelato de estroncio (se define como la unión de un ácido orgánico, el ácido ranélico con 2 átomos de estroncio estable): fármaco para tratar osteoporosis, ya prescripta en la UE, pero no en EE.UU.
[editar] Historia
El estroncio fue identificado en las minas de plomo de Strontian (Escocia), de donde procede su nombre, en 1790 por Adair Crawford en el mineral estroncianita distinguiéndolo de otros minerales de bario.[5] [6] En 1798 Klaproth y Hope lo descubrieron de forma independiente. El primero en aislar el estroncio fue Humphry Davy, en 1808, mediante electrólisis de la estronciana —óxido de estroncio— de donde proviene el nombre del metal.[7] [8] [9]

Abundancia y obtención
Según el Servicio Geológico Británico, China fue el principal productor de estroncio en el año 2007, con más de dos tercios de la producción mundial, seguido por España, México, Turquía, Argentina e Irán.[10] El estroncio es un elemento abundante en la naturaleza representando una media del 0,034% de todas las rocas ígneas y se encuentra mayoritariamente en forma de sulfato (celestina) y carbonato (estroncianita). La similitud de los radios iónicos de calcio y estroncio hace que éste pueda sustituir al primero en las redes iónicas de sus especies minerales lo que provoca que el estroncio se encuentre muy distribuido. La celestita se encuentra en buena medida en depósitos sedimentarios de tamaño suficiente para que su minería sea rentable, razón por la que es la principal mena de estroncio a pesar de que la estroncita sería, en principio, mejor ya que el estroncio se consume principalmente en forma de carbonato, sin embargo los depósitos de estroncita económicamente viables encontrados hasta la fecha son escasos. Las explotaciones principales de mineral de estroncio se encuentran en Inglaterra.[11] [10]

El metal se puede extraer por electrólisis del cloruro fundido mezclado con cloruro de potasio:

(cátodo) Sr2+ + 2e– → Sr (ánodo) Cl– ½Cl2 (gas) + e–
o bien por aluminotermia, es decir, reducción del óxido con aluminio en vacío a la temperatura de destilación del estroncio.

Isótopos
El estroncio tiene cuatro isótopos naturales estables: Sr-84 (0,56%), Sr-86 (9,86%), Sr-87 (7,0%) y Sr-88 (82,58%). Únicamente el isótopo Sr-87 es radiogénico, producto de la desintegración de rubidio-87. Por tanto, el Sr-87 puede tener dos orígenes: el formado durante la síntesis nuclear primordial (junto con los otros tres isótopos estables) y el formado por el decaimiento del rubidio. La razón Sr-87/Sr-86 es el parámetro típicamente utilizado en la datación radiométrica de la investigación geológica, encontrándose entre valores entre 0,7 y 4,0 en distintos minerales y rocas.

Se conocen dieciséis isótopos radioactivos. El más importante es el Sr-90, con un periodo de semidesintegración de 28,78 años, subproducto de la lluvia nuclear que sigue a las explosiones nucleares y que representa un importante riesgo sanitario ya que sustituye con facilidad al calcio en los huesos dificultando su eliminación. Este isótopo es uno de los mejor conocidos emisores beta de alta energía y larga vida media y se emplea en generadores auxiliares nucleares (SNAP, Systems for Nuclear Auxiliary Power) para naves espaciales, estaciones meteorológicas remotas, balizas de navegación y, en general, aplicaciones en las que se requiera una fuente de energía eléctrica ligera y con gran autonomía.

Precauciones
El estroncio puro es extremadamente reactivo y arde espontáneamente en presencia de aire por lo que se le considera un riesgo de incendio.

El cuerpo humano absorbe estroncio al igual que calcio. Las formas estables (no radiactivas) de estroncio no provocan efectos adversos significativos en la salud, pero el Sr-90 radiactivo se acumula en el cuerpo prolongando la exposición a la radiación y provocando diversos desórdenes incluido el cáncer de hueso.

Efecto en el cuerpo humano
El cuerpo humano absorbe estroncio como si fuese calcio. Debido a la similitud química, las formas estables de estroncio pueden no poseer una significativa acción tratante de la salud, pero la forma radioactiva 90Sr puede ayudar en varias enfermedades de los huesos, inclusive cáncer óseo primario.La unidad Sr se usa para medir la radioactividad del 90Sr absorbido.

Un estudio reciente in-vitro conducido por el "NY College of Dental Sciences" usó estroncio en osteoblastos mostró marcada mejora en regenerar osteoblastos.[12]

Una droga innovativa: ranelato de estroncio hecha de la combinación de estroncio con ácido ranélico ha mostrado efectos en el crecimiento óseo, con ganancias en la densidad ósea y en vértebras debilitadas, y en fracturas.[13] [14] Mujeres receptoras de la droga mostraron un 12,7% de incremento en densidad ósea. Mientras que las que recibieron un placebo tuvieron un 1,6% de decremento. La mitad del incremento en la densidad ósea (medida por densitometría de rayos X) se atribuyó al mayor peso atómico del estroncio comparado con el calcio, y la otra mitad al verdadero incremento de masa ósea.

El ranelato de estroncio está registrada como una droga de prescripción médica en Europa y muchos otros países. Necesita ser prescripta por un médico, despachada por el farmacéutico, y requiere estricta supervisión del facultativo. En 2009 su uso no estaba aún aprobado en Canadá ni en EE.UU.

Varias otras sales de estroncio como citrato de estroncio o carbonato de estroncio, suelen presentarse como terapias naturales y vendidas a dosis varias centenares de veces más altas que las dosis que naturalmente pueden ingresar al organismo.[15] [16] [17] [18] [19] [20] [21] A pesar que la falta de estroncio está referenciada en la literatura médica pero también hay escasez de información acerca de la posible toxicidad de la suplementación con estroncio, tales compuestos pueden aún ser vendidos en EE.UU. bajo la "Dietary Supplements Health and Education Act de 1994". Se desconocen sus efectos a largo plazo y eficacia pues nunca han sido evaluados en humanos usando experimentos a larga escala médica.

CALCIO

Calcio

Se encuentra en el medio interno de los organismos como ion calcio (Ca2+) o formando parte de otras moléculas; en algunos seres vivos se halla precipitado en forma de esqueleto interno o externo. Los iones de calcio actúan de cofactor en muchas reacciones enzimáticas, interviene en el metabolismo del glucógeno, junto al potasio y el sodio regulan la contracción muscular. El porcentaje de calcio en los organismos es variable y depende de las especies, pero por término medio representa el 2,45% en el conjunto de los seres vivos; en los vegetales, sólo representa el 0,007%.

En el habla vulgar se utiliza la voz calcio para referirse a sus sales (v.g., esta agua tiene mucho calcio; en las tuberías se deposita mucho calcio, etc.)

Contenido
1 Historia
2 Características principales
3 Aplicaciones
4 Rol biológico
5 Abundancia y obtención
6 Isótopos
7 Calcio esquelético
8 Calcio sérico
9 Absorción y excreción
10 Funciones
11 Deficiencia de Calcio
12 Toxicidad
13 Requerimientos dietéticos recomendados
14 Fuentes dietéticas
15 Referencias
16 Véase también
17 Enlaces externos

Historia
El calcio (del latín calx, calis , cal) fue descubierto en 1808 por Humphry Davy mediante electrólisis de una amalgama de mercurio (elemento) y cal. Davy mezcló cal humedecida con óxido de mercurio que colocó sobre una lámina de platino, el ánodo, y sumergió una parte de mercurio en el interior de la pasta que hiciera de cátodo; por electrólisis obtuvo una amalgama que, destilada, dejó un residuo sólido muy oxidable, aunque ni siquiera el mismo Davy estaba muy seguro de haber obtenido calcio puro; con posterioridad Bunsen en 1854 y Matthiessen en 1856 obtuvieron el metal por electrólisis del cloruro de calcio, y Henri Moissan obtuvo calcio con una pureza del 99% por electrólisis del yoduro. No obstante, hasta principios del siglo XX el calcio (Ca) sólo se obtenía en laboratorio. Su símbolo químico es Ca, su número atómico es 20 y su masa atómica es 40,078

Características principales
El calcio es un metal alcalinotérreo, arde con llama roja formando óxido de calcio y nitruro. Las superficies recientes son de color blanco plateado pero palidecen rápidamente tornándose levemente amarillentas expuestas al aire y en última instancia grises o blancas por la formación de hidróxido al reaccionar con la humedad ambiental. Reacciona violentamente con el agua en su estado de metal (proveniente de fábrica) para formar hidróxido Ca(OH)2 desprendiendo hidrógeno. De lo contrario en su estado natural no reacciona con el H2O.

Aplicaciones
Agente reductor en la extracción de otros metales como el uranio, circonio y torio.
Desoxidante, desulfurizador, o decarburizador para varias aleaciones ferrosas y no ferrosas.
Agente de aleación utilizado en la producción de aluminio, berilio, cobre, plomo y magnesio.
Aplicación en muchos productos lácteos o medicamentos para el refuerzo de los huesos humanos, compuestos de calcio .Si tenemos falta de calcio en nuestros huesos facilitaremos la aparición de enfermedades como la osteoporosis.

Rol biológico
El calcio actúa como mediador intracelular cumpliendo una función de segundo mensajero; por ejemplo, el ion Ca2+ interviene en la contracción de los músculos y es imprescindible para la coagulación de la sangre.[1] También está implicado en la regulación de algunas enzimas quinasas que realizan funciones de fosforilación, por ejemplo la proteína quinasa C (PKC), y realiza unas funciones enzimáticas similares a las del magnesio en procesos de transferencia de fosfato (por ejemplo, la enzima fosfolipasa A2). Algunas de sus sales son bastante insolubles, por ejemplo el sulfato (CaSO4), carbonato (CaCO3), oxalato, etc. y forma parte de distintos biominerales. Así, en el ser humano, está presente en los huesos como hidroxiapatito cálcico, Ca10(OH)2(PO4)6. El calcio interviene en la formación de las placas de algunas arterioesclerosis.
Abundancia y obtención
Es el quinto elemento en abundancia en la corteza terrestre (3,6% en peso) pero no se encuentra en estado nativo sino formando compuestos con gran interés industrial como el carbonato (calcita, mármol, caliza y dolomita) y el sulfato (aljez, alabastro) a partir de los cuales se obtienen la cal viva, la escayola, el cemento, etc.; otros minerales que lo contienen son fluorita (fluoruro), apatito (fosfato) y granito (silicato).

El metal se aísla por electrólisis del cloruro de calcio (subproducto del proceso Solvay) fundido:

cátodo: Ca2+ + 2 e- → Ca
ánodo: 2Cl- → Cl2 (gas) + 2e-

Isótopos
El calcio tiene seis isótopos estables de los cuales el 40Ca es el más abundante (97%). El 40Ca y el 40Ar son productos de la desintegración del 40K, pero mientras que el segundo se ha usado para la datación en geología, la prevalencia del isótopo 40Ca en la naturaleza ha impedido hacer lo mismo con el calcio. A diferencia de otros isótopos cosmogénicos producidos en la atmósfera terrestre, el 41Ca se produce por activación neutrónica del 40Ca, de este modo se sintetiza en las capas más superficiales del suelo, en las que el bombardeo de neutrones es suficientemente intenso. Además de esto, el 41Ca ha recibido la atención de los científicos porque se desintegra en 41K, un indicador crítico de las anomalías del Sistema Solar.

Calcio esquelético
El calcio esquelético o el almacenado en los huesos, se distribuye entre un espacio relativamente no intercambiable, que es estable y del espacio rápidamente intercambiable, el cual participa en las actividades metabólicas. El componente intercambiable puede considerarse una reserva que se acumula cuando la dieta proporciona una ingesta adecuada de calcio. Se almacena principalmente en los extremos de los huesos largos y se moviliza para satisfacer el aumento de las necesidades de crecimiento, del embarazo y de la lactancia. En ausencia de dicha reserva, el calcio debe sustraerse de la misma reserva ósea; si la ingesta inadecuada de calcio se prolonga resulta en una estructura ósea deficiente. El calcio se presenta en los huesos bajo la forma de hidroxiapatita, una estructura cristalina que consiste de fosfato de calcio que se arregla alrededor de una matriz orgánica de proteína colagenosa para proporcionar fuerza y rigidez. Muchos otros iones se presentan, como fluor, magnesio, cinc y sodio. Los iones minerales se difunden dentro del líquido extracelular, bañando los cristales y permitiendo el depósito de nuevos minerales. Los mismos tipos de cristales se presentan en el esmalte y la dentina de los dientes, allí hay poco intercambio de minerales y el calcio no está disponible con facilidad para los periodos de deficiencia. En el proceso de formación y remodelación ósea participan las células osteclásticas (células de resorción ósea) y los osteoblastos (células formadoras), controladas a su vez, por diversas hormonas sistémicas (parathormona y calcitonina), el estado nutricional de vitamina D y factores reguladores de crecimiento (1).

Calcio sérico
Este calcio consta de tres fracciones distintas: calcio libre o ionizado, calcio aniónico que se une a fosfatos y calcio unido a proteínas, principalmente albúmina o globulina. El calcio ionizado es quien realiza la mayoría de funciones metabólicas. Su concentración está controlada principalmente por la parathormona, la calcitonina y la vitamina D. El calcio sérico se mantiene en niveles muy estrechos de 8.8 a 10.8 mg/dL (1). Algunas de sus sales son bastante insolubles, por ejemplo el sulfato (CaSO4), carbonato (CaCO3, oxalato, etc., y forma parte de distintos biominerales. Así, en el ser humano, está presente en los huesos como hidroxiapatito cálcico, Ca10(OH)2(PO4)6 como el hidrógeno.

Absorción y excreción
El calcio se absorbe principalmente en el duodeno y también a lo largo del tracto gastrointestinal. La absorción ocurre por dos métodos principales: un sistema de transporte saturable, activo, ocurre en duodeno y yeyuno proximal y controlado mediante la acción de la vitamina D3 o 1,25 (OH)2D3 (Vitamina D activa), esta vitamina actúa como una hormona y aumenta la captación de calcio en el borde en cepillo de la célula de la mucosa intestinal al estimular la producción de una proteína que se une a la calcio. Un segundo mecanismo de transporte es pasivo, no saturable e independiente de la vitamina D, ocurre a lo largo de todo el intestino. El calcio sólo se absorbe si está en una forma hidrosoluble y no se precipita por otro componente de la dieta como los oxalatos (1). Diversos factores influyen de manera favorable la absorción de calcio, entre ellos; la vitamina D en su forma activa, pH ácido, la lactosa (azúcar de la leche) y existen otros que afectan la absorción como la carencia de la vitamina D, el ácido oxálico (contenido en el ruibarbo, espinaca, acelgas), al ácido fítico (compuesto que contiene fósforo y se encuentra en las cáscaras de los granos de cereales), la fibra dietética, medicamentos, malabsorción de grasas y el envejecimiento (1). Normalmente la mayor parte del calcio que se ingiere se excreta en las heces y la orina en cantidades iguales aproximadamente. La excreción urinaria del calcio varía a través del ciclo vital y con la velocidad del crecimiento esquelético. El calcio fecal se correlaciona con la ingesta. La ingesta de cafeína y teofilina también se relacionan con la excreción de calcio. Las pérdidas cutáneas ocurren en la forma de sudor y exfoliación de la piel. La pérdida de calcio en el sudor es de aproximadamente 15 mg/día. La actividad física extenuante con sudoración aumentará las pérdidas, incluso en las personas con bajas ingestas. La inmovilidad del cuerpo por reposo en cama por tiempo prolongado también aumenta las pérdidas de calcio en respuesta a la falta de tensión sobre los huesos (1).

Funciones
Además de su función en la construcción y mantenimiento de huesos y dientes, el calcio también tiene otras funciones metabólicas. Afecta la función de transporte de las membranas celulares, actuando como un estabilizador de membrana. También influye en la transmisión de iones a través de las membranas, y la liberación de neurotransmisores (1). Este calcio actúa como mediador intracelular cumpliendo una función de segundo mensajero; por ejemplo, el ion Ca2+ interviene en la contracción de los músculos. También está implicado en la regulación de algunas enzimas quinasas que realizan funciones de fosforilación, por ejemplo la proteína quinasa C (PKC), y realiza unas funciones enzimáticas similares a las del magnesio en procesos de transferencia de fosfato (por ejemplo, la enzima fosfolipasa A2). Se requiere calcio en la trasmisión nerviosa y en la regulación de los latidos cardiacos. El equilibrio adecuado de los iones de calcio, sodio, potasio y magnesio mantiene el tono muscular y controla la irritabilidad nerviosa.

Deficiencia de Calcio
Cuando la deficiencia es a largo plazo y desde etapas tempranas de la vida, puede causar entre otras consecuencias:

Deformidades Óseas, entre ellas la osteomalacia, raquitismo y osteoporosis. La osteoporosis es un trastorno metabólico en el que la masa ósea se reduce sin cambios en la composición corporal, conduciendo a un riesgo incrementado para fracturas con la más mínina tensión. Los factores de riesgo son diversos incluyendo deficiente captación de calcio, o poca ingesta de calcio durante los periodos máximos de crecimiento, poca actividad física, alto consumo de café y cigarrillos entre otros. La Osteomalacia, suele relacionarse con una deficiencia de vitamina D y un desequilibrio coincidente en la captación de calcio y fósforo. Se caracteriza por una incapacidad para mineralizar la matriz ósea. Lo que resulta en una reducción del contenido mineral del hueso. La deficiencia de calcio también puede conducir al Raquitismo, una enfermedad relacionada con la malformación de los huesos en niños, debido a una mineralización deficiente de la matriz orgánica. Los huesos raquíticos no pueden sostener el peso y tensión ordinaria, que resultan en un aspecto de piernas arqueadas, rodillas confluentes, tórax en quilla y protuberancia frontal del cráneo (1).

Tetania: niveles muy bajos de calcio en sangre aumentan la irritabilidad de las fibras y los centros nerviosos, lo que resulta en espasmos musculares conocidos como calambres, una condición llamada tetania.

Otras enfermedades: hipertensión arterial, hipercolesterolemia, cáncer de colon y recto (1).

Toxicidad
Una ingesta elevada de calcio y la presencia de un elevado nivel de vitamina D, puede constituir una fuente potencial de hipercalcemia, es posible que esto favorezca a la calcificación excesiva en huesos y tejidos blandos. También estas ingestas elevadas intervienen con la absorción de hierro, lo mismo para el zinc.

MAGNESIO

Magnesio

No debe confundirse con manganeso.
El magnesio es el elemento químico de símbolo Mg y número atómico 12. Su masa atómica es de 24,305 u. Es el séptimo elemento en abundancia constituyendo del orden del 2% de la corteza terrestre y el tercero más abundante disuelto en el agua de mar. El ion magnesio es esencial para todas las células vivas. El metal puro no se encuentra en la naturaleza. Una vez producido a partir de las sales de magnesio, este metal alcalino-térreo es utilizado como un elemento de aleación.

Contenido
1 Historia
2 Principales características
3 Aplicaciones
4 Abundancia y obtención
5 Isótopos
6 Precauciones
7 Papel biológico
8 Nutrición
8.1 Alimentos donde encontramos el magnesio
8.2 Beneficios del magnesio para nuestro organismo
8.3 Síntomas de la carencia de magnesio
9 Usos en medicina
10 Véase también
11 Referencias
12 Enlaces externos

Historia
El nombre procede de Magnesia, que en griego designaba una región de Tesalia (Grecia). El inglés Joseph Black reconoció el magnesio como un elemento químico en 1755. En 1808 sir Humphry Davy obtuvo metal puro mediante electrólisis de una mezcla de magnesia y HgO.

[editar] Principales características
El magnesio no se encuentra en la naturaleza en estado libre (como metal), sino que forma parte de numerosos compuestos, en su mayoría óxidos y sales; es insoluble. El magnesio elemental es un metal liviano, medianamente fuerte, color blanco plateado. En contacto con el aire se vuelve menos lustroso, aunque a diferencia de otros metales alcalinos no necesita ser almacenado en ambientes libres de oxígeno, ya que está protegido por una fina capa de óxido, la cual es bastante impermeable y difícil de sacar. Como su vecino inferior de la tabla periódica, el calcio, el magnesio reacciona con agua a temperatura ambiente, aunque mucho más lento. Cuando se sumerge en agua, en la superficie del metal se forman pequeñas burbujas de hidrógeno, pero si es pulverizado reacciona más rápidamente. El magnesio también reacciona con ácido clorhídrico (HCl) produciendo calor e hidrógeno, que se libera al ambiente en forma de burbujas. A altas temperaturas la reacción ocurre aún más rápido. En química orgánica es un metal ampliamente empleado al ser necesario para la síntesis de reactivos de Grignard. El magnesio es un metal altamente inflamable, que entra en combustión fácilmente cuando se encuentra en forma de virutas o polvo, mientras que en forma de masa sólida es menos inflamable. Una vez encendido es difícil de apagar, ya que reacciona tanto con nitrógeno presente en el aire (formando nitrato de magnesio) como con dióxido de carbono (formando óxido de magnesio y carbono). Al arder en aire, el magnesio produce una llama blanca muy intensa incandescente, la cual fue muy utilizada en los comienzos de la fotografía. En ese tiempo se usaba el polvo de magnesio como la fuente de iluminación (polvo de flash). Más tarde, se usarían tiras de magnesio en bulbos de flash eléctricos. El polvo de magnesio todavía se utiliza en la fabricación de fuegos artificiales y en bengalas marítimas.

Aplicaciones
Objetos que contienen magnesio.Los compuestos de magnesio, principalmente su óxido, se usan como material refractario en hornos para la producción de hierro y acero, metales no férreos, cristal y cemento, así como en agricultura e industrias químicas y de construcción. El uso principal del metal es como elemento de aleación del aluminio, empleándose las aleaciones aluminio-magnesio en envases de bebidas. Las aleaciones de magnesio, especialmente magnesio-aluminio, se emplean en componentes de automóviles, como llantas, y en maquinaria diversa. Además, el metal se adiciona para eliminar el azufre del acero y el hierro. Otros usos son:

Aditivo en propelentes convencionales.
Obtención de fundición nodular (hierro-silicio-Mg) ya que es un agente esferoidizante/nodulizante del grafito.
Agente reductor en la obtención de uranio y otros metales a partir de sus sales.
El hidróxido (leche de magnesia), el cloruro, el sulfato (sales Epsom) y el citrato se emplean en medicina. El polvo de carbonato de magnesio (MgCO3) es utilizado por los atletas como gimnastas y levantadores de peso para mejorar el agarre de los objetos. Es por este motivo prácticamente imprescindible en la escalada de dificultad para secar el sudor de manos y dedos del escalador y mejorar la adherencia a la roca. Se lleva en una bolsa colgada de la cintura.
Otros usos incluyen flashes fotográficos, pirotecnia y bombas incendiarias, de

Abundancia y obtención
El magnesio es el séptimo elemento más abundante en la corteza terrestre, sin embargo no se encuentra libre, aunque entra en la composición de más de 60 minerales, siendo los más importantes industrialmente los depósitos de dolomía, dolomita, magnesita, brucita, carnalita y olivino. En EE. UU. el metal se obtiene principalmente por electrólisis del cloruro de magnesio, método que ya empleaba Robert Bunsen, obtenido de salmueras, boquerones y agua de mar.

Isótopos
El magnesio-26 es un isótopo estable que se emplea en la datación radiométrica, al igual que el Al-26, del que es hijo. En las CAI (inclusiones ricas en calcio y aluminio) de algunos meteoritos, los objetos más antiguos del sistema solar, se han encontrado cantidades de Mg-26 mayores de las esperadas que se atribuyen al decaimiento del Al-26. Estos objetos, cuando se han desprendido en etapas tempranas de la formación de los planetas y asteroides no han sufrido los procesos geológicos que hacen desaparecer las estructuras condríticas (formadas a partir de las inclusiones) y por tanto guardan información acerca de la edad del sistema solar. En los estudios se compararon las tasas de Mg-26/Mg-24 y Al-27/Mg-24, para determinar así, de manera indirecta, la relación Al-26/Al-27 inicial de la muestra en el momento en que ésta se separó de las regiones de polvo de la nébula presolar a partir de la que se formó nuestro sistema solar.

Precauciones
El magnesio es extremadamente inflamable, especialmente si está pulverizado. En contacto con el aire y algo de calor no muy fuerte reacciona rápidamente y con ácidos también, produciendo hidrógeno, por lo que debe manipularse con precaución. El fuego, de producirse, no se deberá intentar apagar con agua, deberá usarse arena seca, cloruro de sodio o extintores de clase D.

papel biológico
El magnesio es importante para la vida, tanto animal como vegetal. La clorofila (que interviene en la fotosíntesis) es una sustancia compleja de porfirina-magnesio. El magnesio es un elemento químico esencial para el ser humano; la mayor parte del magnesio se encuentra en los huesos y sus iones desempeñan papeles de importancia en la actividad de muchas coenzimas y en reacciones que dependen del ATP. También ejerce un papel estructural, ya que el ion de Mg2+ tiene una función estabilizadora de la estructura de cadenas de ADN y ARN. Interviene en la formación de neurotrasmisores y neuromoduladores, repolarización de la neuronas, relajación muscular (siendo muy importante su acción en el músculo cardíaco).[1] El magnesio actúa como energizante y calmante en el organismo. La pérdida de magnesio se debe a diversas causas, en especial cuando el individuo se encuentra en circunstancias de estrés físico o mental. El magnesio que se encuentra en la célula es liberado al torrente sanguíneo, en donde posteriormente es eliminado por la orina y/o las heces fecales. A mayor estrés, mayor es la pérdida de magnesio en el organismo.[2] En función del peso y la altura, la cantidad diaria recomendada es de 300-350 mg, cantidad que puede obtenerse fácilmente ya que se encuentra en la mayoría de los alimentos, siendo las semillas las más ricas en magnesio como el cacao,[1] las almendras, harina de soya, cacahuates, judías blancas, legumbres, avellanas, nueces y las hojas verdes de las hortalizas.

Nutrición
Alimentos ricos en magnesio.[editar] Alimentos donde encontramos el magnesio
En los frutos secos: girasol, sésamo, almendras, pistacho, avellanas y nueces.
Entre los cereales: germen de trigo, levadura, mijo, arroz y trigo.
En las legumbres: soja, alubias, garbanzos y lentejas.
Y en los germinados: ya que la clorofila contiene magnesio.
De lo que comemos, solo del 30 - 40 % es absorbido por nuestro cuerpo y depositado en el intestino delgado. Beneficios del magnesio para nuestro organismo
El magnesio es un tranquilizante natural que mantiene el equilibrio energético en las neuronas y actúa sobre la transmisión nerviosa, manteniendo al sistema nervioso en buena salud. Ampliamente recomendado para los tratamientos antiestrés y antidepresión. Es además un relajante muscular.

Otros beneficios:
El magnesio ayuda a fijar el calcio y el fósforo en los huesos y dientes.
Previene los cálculos renales ya que moviliza al calcio.[cita requerida]
El magnesio actúa como un laxante suave y antiácido.
Es también efectivo en las convulsiones del embarazo: previene los partos prematuros manteniendo al útero relajado.
Interviene en el equilibrio hormonal, disminuyendo los dolores premenstruales.
Actúa sobre el sistema neurológico favoreciendo el sueño y la relajación.
Autorregula la composición y propiedades internas (homeostasis).
Actúa controlando la flora intestinal y nos protege de las enfermedades cardiovasculares. Favorable para quien padezca de hipertensión.
[editar] Síntomas de la carencia de magnesio
Una dieta que aporte menos de 2000 calorías provoca la insuficiencia de magnesio en nuestros cuerpos. Los síntomas se pueden detectar a través de la irritabilidad y la inestabilidad emocional y con el aumento y disminución de los reflejos, descoordinación muscular, apatía y debilidad, estreñimiento, trastornos premenstruales, falta de apetito, nauseas, vómitos, diarreas, confusión, temblores. El déficit provoca y mantiene la osteoporosis y las caries así como la hipocalcemia (reducción de calcio en sangre) y la eliminación renal de magnesio. Enfermedades como las diarreas graves, la insuficiencia renal crónica, el alcoholismo, la desnutrición en proteínas y calorías, diabetes y el abuso de diuréticos. El exceso de calcio disminuye la absorción de magnesio por lo que no hay que abusar de la leche. El exceso de fósforo también produce la mala absorción de magnesio así como también los fosfatos de algunos tipos de salchichas, quesos, helados y todas las bebidas basadas en cola.[3]

Usos en medicina
El hidróxido de magnesio, Mg(OH)2 es comúnmente utilizado como antiácido o como laxante. Se obtiene al mezclar óxido de magnesio con agua:

MgO + H2O → Mg(OH)2
El magnesio se utiliza para tratar problemas digestivos asociados al tránsito intestinal, como el de colon irritable. Este es el caso de algunas estaciones termales (como la de Châtelguyon[2]), con aguas muy ricas en magnesio y que proponen tratamientos digestivos, urinarios y antiestrés.

En caso de osteoporosis es muy importante la ingesta de magnesio y calcio, administrar magnesio por la noche induce al sueño,[3] así mismo es recomendado cuando existe alta presión en el organismo.

Contra el blefaroespasmo tomado como suplemento de cloruro de magnesio resulta ser efectivo en algunos casos.
A las personas con insuficiencia renal se les recomienda su consumo bajo supervisión medica.

BERILIO

BERILIO (Be)

El berilio es un elemento químico de símbolo Be y número atómico 4. Es un elemento alcalinotérreo bivalente, tóxico, de color gris, duro, ligero y quebradizo. Se emplea principalmente como endurecedor en aleaciones, especialmente de cobre.

Contenido
1 Características principales
2 Aplicaciones
3 Historia
4 Abundancia y obtención
5 Isótopos
6 Precauciones
7 Efectos sobre la salud
8 Enlaces externos

Características principales
El berilio tiene uno de los puntos de fusión más altos entre los metales ligeros. Su módulo de elasticidad es aproximadamente un 33% mayor que el del acero. Tiene una conductividad térmica excelente, es no magnético y resiste el ataque con ácido nítrico. Es muy permeable a los rayos X y, al igual que el radio y el polonio, libera neutrones cuando es bombardeado con partículas alfa (del orden de 30 neutrones por millón de partículas alfa). En condiciones normales de presión y temperatura el berilio resiste la oxidación del aire, aunque la propiedad de rayar al cristal se debe probablemente a la formación de una delgada capa de óxido.

Aplicaciones
Elemento de aleación, en aleaciones cobre-berilio con una gran variedad de aplicaciones.
En el diagnóstico con rayos X se usan delgadas láminas de berilio para filtrar la radiación visible, así como en la litografía de rayos X para la reproducción de circuitos integrados.
Moderador de neutrones en reactores nucleares.
Por su rigidez, ligereza y estabilidad dimensional, se emplea en la construcción de diversos dispositivos como giróscopos, equipo informático, muelles de relojería e instrumental diverso.
El óxido de berilio se emplea cuando son necesarias elevada conductividad térmica y propiedades mecánicas, punto de fusión elevado y aislamiento eléctrico.
Antaño se emplearon compuestos de berilio en tubos fluorescentes, uso abandonado por la beriliosis.
Fabricación de Tweeters en altavoces de la clase High-End, debido a su gran rigidez.

Historia
El berilio (del griego βερυλλoς berilo) o glucinio (del inglés glucinium y éste del griego γλυκυς, dulce) por el sabor de sus sales, fue descubierto por Vauquelin en 1798 en forma de óxido en el berilo y la esmeralda. Friedrich Wöhler y A. A. Bussy de forma independiente aislaron el metal en 1828 mediante reacción de potasio con cloruro de berilio.
Abundancia y obtención
El berilio se encuentra en 30 minerales diferentes, siendo los más importantes berilo y bertrandita, principales fuentes del berilio comercial, crisoberilo y fenaquita. Actualmente la mayoría del metal se obtiene mediante reducción de fluoruro de berilio con magnesio. Las formas preciosas del berilo son el aguamarina y la esmeralda. Geográficamente, las mayores reservas se encuentran en los Estados Unidos que lidera también la producción mundial de berilio (65%), seguido de Rusia (40%) y China (15%). Las reservas mundiales se estima que superan las 80.000 toneladas.

Isótopos
El Be-9 es el único isótopo estable. El Be-10 se produce en la atmósfera terrestre al bombardear la radiación cósmica el oxígeno y nitrógeno. Dado que el berilio tiende a existir en disolución acuosa con niveles de pH menores de 5.5, este berilio atmosférico formado es arrastrado por el agua de lluvia (cuyo pH suele ser inferior a 5.5); una vez en la tierra, la solución se torna alcalina precipitando el berilio que queda almacenado en el suelo durante largo tiempo (periodo de semidesintegración de 1,5 millones de años) hasta su transmutación en B-10. El Be-10 y sus productos hijo se han empleado para el estudio de los procesos de erosión, formación a partir de regolito y desarrollo de suelos lateríticos, así como las variaciones en la actividad solar y la edad de masas heladas. El hecho de que el Be-7 y el Be-8 sean inestables tiene profundas consecuencias cosmológicas, ya que ello significa que elementos más pesados que el berilio no pudieron producirse por fusión nuclear en el big bang. Más aún, los niveles energéticos nucleares del Be-8 son tales que posibilitan la formación de carbono y con ello la vida (véase proceso triple alfa).

Precauciones
El berilio y sus sales son tóxicas y potencialmente carcinógenas. La beriliosis crónica es una afección pulmonar causada por exposición al polvo de berilio catalogada como enfermedad profesional. Los primeros casos de neumonitis química aguda por exposición al berilio se produjeron en 1933 en Europa y en 1943 en los Estados Unidos; en 1946 se describieron los primeros casos de beriliosis entre los trabajadores de una planta de fabricación de tubos fluorescentes en Massachusetts. La beriliosis se asemeja a la sarcoidosis en muchos aspectos, lo que dificulta en ocasiones el diagnóstico. Aunque la utilización de compuestos de berilio en lámparas fluorescentes se interrumpió en 1949, la exposición profesional se produce en las industrias nuclear y aeroespacial, en el refinado del metal y en la fusión de las aleaciones que lo contienen, en la fabricación de dispositivos electrónicos y en la manipulación de otros materiales que contienen berilio. El berilio y sus compuestos deben manipularse con mucho cuidado, extremando las precauciones cuando durante la actividad pueda generarse polvo de berilio ya que la exposición prolongada al polvo de berilio puede causar cáncer de pulmón. La sustancia puede manipularse con seguridad siempre y cuando se sigan ciertos procedimientos. Si éstos se desconocen no debe intentarse la manipulación del berilio.

Efectos sobre la salud
Los efectos dependen del nivel y de la duración de la exposición. Si el nivel es suficientemente alto, por encima de 1000 μg/m3 en el aire respirado, puede provocar una enfermedad aguda por berilio o beriliosis aguda, la cual causa una inflamación grave de los pulmones; en general, los valores límites para el berilio atmosférico contemplados en la legislación de higiene industrial que fijan los niveles máximos de exposición laboral, permiten controlar de forma efectiva este riesgo. Entre el 1 y el 15% de la población expuesta desarrolla sensibilización al berilio. Estas personas pueden desarrollar procesos inflamatorios del aparato respiratorio (enfremedad crónica por berilio o beriliosis crónica) que pueden manifestarse años después de la exposición laboral cuando ésta ha superado los niveles de exposición recomendados (0,2 μg/m3). El riesgo de la población general a contraer estas enfermedades es muy bajo ya que los niveles de berilio en entornos no laborales son muy bajos (0,00003-0,0002 μg/m3). La intoxicación por ingestión de berilio no se conoce ya que la cantidad de berilio absorbida por el organismo por esa vía es muy pequeña, aunque han podido observarse úlceras en perros tras la ingesta de berilio. El contacto del berilio con la piel tras un rasguño o corte, puede causar eczema y úlceras cutáneas. La exposición prolongada incrementa el riesgo de contraer cáncer de pulmón. La Agencia Internacional para la Investigación del Cáncer ha determinado que el berilio es un carcinógeno humano.